## Application Note

# FOX2D CU 12\_INF collimating optics

## SAXS (Small Angle X-Ray Scattering) applications

The SAXS technique is performed in transmission mode. The scattering features at these angles correspond to structures ranging from tens to thousands of Angstroms.

In this mode, polymer samples are typically 1-2 mm thick, leading to about 60% absorption of the incident x-ray (Cu  $K_{\alpha})$  beam.





The related experiments were performed in order to demonstrate the Xenocs mirror advantages for SAXS applications.

The FOX optics achieves very low values of minimum detectable scattering vector  $(q_{min})$  while providing high flux on the sample and low background.

CEA, Grenoble, France DRFMC / SI3M

| e | X-ray generator        | Nonius FR591 RAG               |
|---|------------------------|--------------------------------|
|   | Point source           | 0.1 x 0.1 mm <sup>2</sup>      |
|   | Working Power          | 1200 W (40 kV, 30 mA)          |
|   | Xenocs optics          | FOX2D CU 12_INF                |
|   | 3 slits configuration  | vacuum tubes between the slits |
|   | source-sample distance | 350 cm                         |
|   | Measured divergence    | V=0.88 mrad FWHM               |
|   | (with a CCD camera)    | H=0.75 mrad FWHM               |

## Flux improvement highlight

#### Figure 1

SAXS spectrum in absolute scale for a water sample (1 mm thickness) obtained after correction of the scattering from the empty cell (Kapton<sup>®</sup> windows).



Acquisition time: 1 hour

2D position sensitive gas (Xe -  $C_2H_6$ ) detector.

Sample - detector distance: 108 cm Beam size at sample position : 1.8 x 1.8 mm<sup>2</sup> (FWHM)

The dotted line corresponds to the expected value calculated for 1 mm water sample.

Flux on the sample : 10<sup>8</sup> photons/s Flux improvement by a factor of 5 at equivalent resolution compared to previous setup with KB mirrors

#### Figure 2

SAXS spectrum in absolute unit obtained with a lupolen sample (2.8 mm thickness).



Acquisition time : 600 s

2D position sensitive gas (Xe -  $C_2H_6$ ) detector.

Sample - detector distance: 108 cm Beam size at sample position: 1.8 x 1.8 mm<sup>2</sup> (FWHM).

### q<sub>min</sub> reduction highlight



#### blue curve: high flux configuration

sample-detector distance : 108 cm

beam size at sample position : 1.85 mm (FWHM)

flux through sample : 8 x 107 counts/s (in detector units)

q<sub>min</sub>: 1.6 x 10<sup>-2</sup> Å<sup>-1</sup>

# The typical goal to reduce $q_{min}$ (minimum scattered angle) for each configuration is mainly taking advantage from the following features :

- Iow divergence and high reflectivity for high flux
- Iow background level and available flux at reduced slits aperture for high resolution.

#### green curve: high resolution configuration

sample-detector distance : 354 cm

beam size at sample position : 0.45 mm (FWHM)

flux through sample : 5 x  $10^6$  counts/s (in detector units)

q<sub>min</sub> : 2.6 x 10<sup>-3</sup> Å<sup>-1</sup>

As the flux was sufficient on his setup, Dr de Geyer added another focusing mirror behind the FOX2D CU 12\_INF to reduce again the  $q_{min}$  range down to  $1.8 \times 10^{-3} \rm \AA^{-1}$ 



info@xenocs.com - www.xenocs.com 19 Rue F. Blumet - 38360 Sassenage (France) Phone : +33 4 76 26 95 40 Fax : +33 4 76 26 95 49 Xenocs - A spin off company from Institut Laue Langevin

03