Collimating multilayer optic FOX3D CU 12_INF

Principal Features

- single Bragg reflection optic
- high efficiency mutilayer coating
- high angular collection efficiency
- aspheric substrate (paraboloid)
- high collection angle

Benefits

- enhanced X-ray beam intensity
- very high flux density
- excellent beam collimation
- low cost of ownership (under vacuum)
- easy to align
- adaptable to all rotating anode generators & micro focused sealed tubes

Applications

- Small Angle X-ray scattering (SAXS)
- High Resolution diffraction
- X-ray diffraction
- X-ray reflectometry

Optional Accessories

- alignment camera
- collimator
- pindiode detector
- vacuum pump
- alignment stage

19 Rue François Blumet 38360 Sassenage - France

Phone: +33 4 76 26 95 40 Fax: +33 4 76 26 95 49 www.xenocs.com sales@xenocs.com FOX3D CU 12_INF is a new generation collimating optic from Xenocs. This optic constitutes an improvement both in terms of total flux, beam divergence and beam uniformity compared

to our previous FOX2D generation. It benefits from Xenocs' exclusive high precision paraboloidal substrate with low slope error and a state of- the-art multilayer.

FOX3D CU 12_INF can be efficiently coupled to small focus sources (smaller than 200 microns) to generate a highly parallel X-ray beam with high intensity due to its unique single reflection design. In particular for SAXS and High Resolution X-ray Diffraction applications FOX3D CU 12_INF provides increased useful flux enabling to achieve higher resolution or better data quality measurements.

With the Xenobox, the FOX3D optic can be adapted on all X-ray sources available on the market and is also available in our GeniX source. Due to its very low divergence, it can also be used on synchrotron beam lines either to refocus an incoming parallel beam or to collimate a beam collected from a small spot.

Fig. 1: Typical beam profile after a Ge CC [004] symmetric crystal (FWHM of 35µrad).

Fig. 2: Experimental propagation curve of the beam shaped by the FOX3D CU 12_INF optic on a 50µm source.

PRELIMINARY - Subject to technical changes without notice

Technical Data

Beam features	
Wavelength	1.54 Å / 8 keV (Cu Kα)
 Integrated flux (on 70µm source 40kV, 30mA in vacuum) 	> 2 x 10 ⁹ photons/sec
 Total divergence (on a 70µm source) 	$< 0.8 \times 0.8$ mrad ² FWHM
 Kα spectral purity 	Typically > 97%
 Kβ contamination 	Typically > 0.3%
 Beam size at mirror exit 	1.1 x 1.5 mm ²
Optical & Mechanical features	
Nominal distance from source to optic centre	120 mm
 Nominal mirror length 	60 mm
 Substrate with optimized shape 	Paraboloid of revolution
• Mechanical dimensions (L $x H x W$)	202 x 104 x 40 mm ³
Optional Alignment Box	
 Primary vacuum housing 	Optic protection and reduced absorption
 Kapton® windows 	Loss per window : 0.75%
Dry vacuum pump	Working pressure : 3 mbar Pumping speed : 0.6 m³/h Voltage 220 or 110V